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Purpose . This study develops and evaluates a systematic approach to finding biomarker genes for

predicting potency of anticancer drugs against tumor cells, focusing on gene families related to growth

factor signaling.

Methods . Cytotoxic potencies of 119 drugs against 60 neoplastic cell lines (NCI-60) were correlated with

expression of 343 genes, including 90 growth factors and receptors, 63 metalloproteinases, and 92 ras-like

GTPases as downstream signaling factors. Progressively more stringent criteria and predictive models

aim at identifying the smallest subset of genes predictive of cytotoxic potency.

Results . Comparing gene expression with drug potency across the NCI-60 yielded genes with negative

and positive correlations ( p < 0.001), indicative of a role in chemoresistance and chemosensitivity,

respectively. Of 17 genes with multiple negative correlations, 8 are known chemoresistance factors,

validating the approach. Negatively correlated genes clustered into two main groups with distinct

expression profiles and drug correlations, represented by EGFR and ERBB2 (Her-2/Neu). Accordingly,

no synergism was observed between EGFR and ERBB2 inhibitors. However, combinations with

classical anticacer drugs were not correlated with EGFR and ERBB2 expression in four cell lines tested,

suggesting complex interactions in combination treatments. Finally, a subset of only 13 genes was found

to be sufficient for near optimal prediction of drug potency against the NCI-60.

Conclusions . Our approach using a small subset of genes reveals known and potential biomarkers in

cancer chemotherapy, providing a strategy for genome-wide analysis.

KEY WORDS: chemoresistance and chemosensitivity; correlation of gene expression and drug potency;
growth factor signaling; mRNA expression array; NCI-60 cells; predictive biomarkers.

INTRODUCTION

Classification of tumors and prediction of drug response
have advanced with the use of mRNA expression profiles
(1Y4). Pathways underlying drug response include membrane
transport, drug metabolism, apoptosis, DNA repair, and cell
cycle control (3,5). However, the full potential of transcrip-
tional profiling in understanding of chemoresistance has yet
to be achieved (4,6), owing to poor reproducibility between
array platforms (1,7), inherent variability of gene expression
in vitro and in vivo, and numerous possible approaches for
analyzing vast amounts of high-dimensional data. This has
resulted in different sets of candidate genes with little overlap
between studies. Holleman et al. (8) have identified a set of

124 genes predictive of acute lymphoblastic leukemia re-
sponse to four anticancer drugs, but only 3 had been pre-
viously associated with drug resistance. Because the 20Y40
predictive genes for each drug differed entirely between each
of the four drugs, the authors concluded that upstream
mechanisms specific to each drug determine the response
(8). Yet, one would have expected common downstream cell
survival pathways to determine chemoresistance against
multiple drugs. In this study, we have systematically evaluat-
ed a multistep approach for extracting useful information
from high-dimensional datasets, with the goal of finding the
minimal number of genes that are predictive of drug potency.
Rather than using genome-wide data for this method
development, we have focused on a limited set of gene
families implicated in growth factor signaling, already
implicated in chemoresistance. Moreover, our approach is
based on the assumption that such genes that are generally
involved in cell survival would interact with multiple drugs,
regardless of the primary mechanism of action. Therefore, we
focus on genes that affect cytotoxic potencies of multiple
drugs. Restricting our approach to a limited set of gene
families has the added advantage of reducing the number of
heuristic models that can predict drug potency, thereby
facilitating the search for genes as biomarkers.
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Growth factor signaling has been implicated in chemo-
resistance by regulating cell proliferation, differentiation,
and apoptosis (5,9). For this project, we have selected gene
families encoding growth factors and their receptors, metal-
loproteinases, and small GTPases. Growth factors and their
receptors are targeted by clinically used drugs; however,
only a small subset of the genes in these two families are
involved. Matrix- and membrane-associated metalloprote-
inases are involved in transformation, proliferation and
metastasis, and growth factor release, whereas GTPases are
downstream integrators of cellular signaling, with neuro-
blastoma RAS viral (v-ras) oncogene homolog (NRAS) and
v-Ha-ras Harvey rat sarcoma viral oncogene homolog
(HRAS) already implicated in chemoresistance (10,11).
Again, only a subset of these genes had been explored as
to their role in anticancer drug response. Our study includes
all members of these gene families to determine whether we
can detect known chemoresistance factors and discover
potential new biomarkers.

Main drug targets include the growth factor receptors
EGFR (12) and ERBB2 (HER-2) (9,13). Amplification,
point mutations, or chromosomal translocation can result in
uncontrolled activation of growth factor signaling pathways,
as exemplified by ERBB2 in breast cancer (14). Growth
factor signaling also conveys chemoresistance against clas-
sical anticancer drugs (15), involving suppression of apop-
tosis (16) and activation of multidrug resistance genes, such
as the drug efflux pump MDR1 (17). As a result, combined
administration of growth factor inhibitors and conventional
cytotoxic drugs can result in synergistic effects (9,18Y20).
However, this strategy has yielded variable results in clinical
trials, possibly because of multiple parallel signaling path-
ways capable of bypassing the blocked signal (15). For
example, signaling via type I insulin-like growth factor re-
ceptor (IGF-IR) may render anti-ERBB2 Herceptin thera-
py ineffective (21). Therefore, a secondary goal of this study
was to assess the role of EGFR and ERBB2 in mediating
chemoresistance against conventional anticancer drugs and
receptor inhibitors, either given alone or in combinations.
Although downstream genes, such as PI3K and AKT, play
critical roles in ERBB2-mediated chemoresistance (22), we
did not include these downstream signaling components in
our current study because of redundancy of signaling path-
way and the complexity of signaling pathway regulation (23).

To assess the role of genes involved in growth factor
signaling, we exploit correlations between gene expression
patterns in the NCI-60 cancer cell lines with cytotoxic drug
potency. The NCI-60, a set of 60 diverse human cancer cell
lines (24), has served in the screening of more than 100,000
candidate drugs. GeneYdrug correlations can reveal novel
drug targets or mechanisms of chemoresistance (1,25,26),
whereas clustering of drug potency against the NCI-60 cells
can reveal mechanisms of action (27). Moreover, mRNA ex-
pression profiles of subsets of 20Y200 genes can serve as
predictors of cytotoxic drug potencies against the NCI-60
(8,28). However, the underlying mechanisms remain unclear,
possibly because the heuristic nature of the prediction
algorithms fails to detect the critical genes. On the other
hand, with a more focused approach measuring the expres-
sion of genes involved in transmembrane transport in the
NCI-60 (29), we have identified, and in several cases valid-

ated, numerous new drugYtransporter relationships relevant
to drug targeting and potency (30) that can be extrapolated
to in vivo studies because causal interactions are implied.

In this study, we have measured expression of 343 genes
related to growth factor signaling, and other signaling path-
ways for comparison (See Supplementary Table I for this
article at http://dx.doi.org/10.1007/s11095-005-9260-y and is
accessible for authorized users), in the NCI-60 (29) and have
correlated the results with cytotoxic drug potencies. Genes
with positive and negative correlations potentially convey
chemosensitivity and chemoresistance, respectively. Among
genes with negative correlations, the known chemoresistance
genes EGFR and ERBB2 displayed sharply distinct drug
correlation patterns. We further tested synergism and antag-
onism between combinations of EGFR and ERBB2 inhib-
itors and traditional cytotoxic anticancer drugs. Finally, we
identified subsets of a minimal number of genes as predictors
of cytotoxic potency for multiple drugs and as potential
biomarkers and drug targets.

MATERIALS AND METHODS

Oligonucleotide Microarrays. 70-mer oligonucleotide
probes (total 343 genes) were designed for 90 growth
factors and their receptors (e.g., EGF, IGF, FGF, PDGF,
VEGF, TGF, and TNF families), 63 metalloproteinases
and their inhibitors (20 MMPs, 4 TIMPs, 20 ADAMs, and
19 ADAMTSs), and 92 small GTP-binding proteins
(GTPases). In addition, 98 probes were targeted to GPCRs,
heterotrimeric G proteins, phospholipases, etc. (See Supple-
mentary Table I for comparison). The 70-mer oligonucleo-
tides were designed and synthesized by Operon (Alameda,
CA, USA), Qiagen (http://omad.qiagen.com/human2/
index.php). Probes for these genes were added to the
transporter and channel gene microarray described previous-
ly (29,31), with 25 genes overlapping with the current study.
Each probe was printed four times on poly-L-lysine glass
slides to permit assessment of intra-assay variability of mRNA
measurements. The 25 genes analyzed in duplicate served as
quality control, in addition to comparison with cDNA arrays
with 144 overlapping genes (available form http://www.
dtp.nci.nih.gov).

NCI-60 Cancer Cell Lines. Cell lines, purchased from
the Division of Cancer Treatment and Diagnosis, National
Cancer Institute, National Institutes of Health (http://www.
dtp.nci.nih.gov), were cultured in RPMI 1640 medium with
L-glutamine, supplemented with 10% fetal bovine serum,
100 U/ml sodium penicillin G, and 100 mg/ml streptomycin.
Cells were grown in tissue culture flasks at 37-C in a 5% CO2

atmosphere.

Chemicals. EGFR inhibitor AG1478 and ERBB2 inhib-
itor AG825 were purchased from Calbiochem (San Diego, CA,
USA). Cisplatin was obtained from Sigma (St. Louis, MO, USA).
Paclitaxel and camptothecin 10-OH (CPT, 10-OH) were from
the Developmental Therapeutics Program at NCI (Bethesda,
MD, USA).

Microarray Hybridization. The hybridization was per-
formed following published procedures (29,31). Total RNA
was extracted from cell cultures using TriZol (Invitrogen,
Carlsbad, CA, USA) and was purified by RNeasy\ mini kit
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(Qiagen, Valencia, CA, USA). Expression of each gene was
assessed by the ratio of expression level in the sample against
a pooled control sample from 12 diverse cell lines of the NCI-
60 (25). Total RNA (12.5 mg) was used for cDNA synthesis
and was then labeled with Cy5 or Cy3. The samples were
then mixed and hybridized to the slides and were analyzed
with an Affymetrix 428 scanner.

Data Analysis. Microarray data analysis was performed
as previously described (29). Background subtraction and
calculation of medians of pixel measurements/spot was
carried out using GenePix Software 3.0 (Foster City, CA,
USA). Spots were filtered out if they had both red and green
intensity <500 units after subtraction of the background or if
they were flagged for any visual reason (odd shapes, back-
ground noise). Data normalization was carried out using the
statistical software package R (http://www.r-project.org). To
correct for intensity and dye bias, we used location and scale
normalization methods, which are based on robust, locally
linear fits, implemented in the SMA R package. This method
is based on transformations R/G Y log2 R/G j cj(A) = log2

R/kj(A) * G Y (1/aj) * log2 R/kj(A) * G, where cj(A) is the
Lowess fit of the M vs. A plot for spots on the jth grid of each
slide and aj is the scale factor for the jth grid (to obtain equal
variances along individual slides). After performing these
transformations, the gene expression level of each probe was
set to be the median of the four copies of that probe.

Correlation Analysis between Gene Expression and Drug
Activity. Growth inhibition data for 119 standard anticancer
drugs (25) (GI50 values for the 60 human tumor cell lines)
were obtained from the Developmental Therapeutics Pro-
gram (http://www.dtp.nci.nih.gov), expressed as the negative
log of the molar concentration calculated in the NCI screen
(32). Pearson’s correlation coefficients were calculated for
each geneYdrug pair (119 � 343 pairs). Confidence intervals
and unadjusted p values were obtained using Efron’s boot-
strap resampling method (33), with 10,000 bootstrap samples
for each geneYdrug comparison. Because controlling false
discovery rate by the method of Benjamini and Hochberg
(34) proved too stringent, an arbitrary cutoff of p = 0.001 was
used for the unadjusted bootstrap p value. This is expected to
detect more Btrue^ geneYdrug associations, at the expense of
increasing the number of false positive ones, to be validated by
other means.

Clustering of Cell Lines, Genes, and Drugs on the Basis
of Gene Expression and Drug Potency Profile. Hierarchical
clustering can be used to group cell lines and genes in terms
of their patterns of gene expression (25,35). To obtain
cellYcell cluster trees for 107 genes that showed distinct
expression patterns across the 60 cell lines (i.e., genes that
passed the filter SD Q 0.35), we used the programs BCluster^
and BTreeView^ (36) with average linkage clustering and a
correlation metric. Cells and drugs were also clustered by
drug potency profiles (25), and moreover, genes and drugs
were classified using correlations between each gene
(expression across the NCI-60) and each drug (potency
across the NCI-60) as distance measure. To reduce noise,
we use stringent filters for the selection of genes included in
this analysis, showing a correlation with at least one drug at
p < 0.001.

Cytotoxicity Assay. Drug potency was tested using a
proliferation assay with sulforhodamine B (SRB) (37). In

each well, 3000Y5000 cells were seeded in 96-well plates and
incubated for 24 h. Drugs were added in a dilution series in
three replicate wells. After 3 days, incubation was terminated
by replacing the medium with 100 ml 10% trichloroacetic acid
(Sigma), followed by incubation at 4-C for 1 h. Plates were
washed with water, air-dried, and stained with 100 ml 0.4%
SRB (Sigma) in 1% acetic acid for 30 min at room tem-
perature. Unbound dye was washed off with 1% acetic acid.
After air-drying and resolubilization of the protein-bound
dye in 10 mM TrisYHCl (pH 8.0), absorbance was read in a
microplate reader at 570 nm.

Determination of Combination Index, A Measure of
Synergism or Antagonism Between Two Coadministered
Agents. The combination index (CI) was calculated accord-
ing to the equation CI = d1/D1 + d2/D2 (38,39). D1 and D2

represent the doses of drug 1 and drug 2 alone, required to
produce x% effect, and d1 and d2 are the doses of drugs 1 and
2 in combination required to produce the same effect. The
combined effect of the two drugs could be synergistic (CI < 1),
additive (CI = 1), or antagonistic (CI > 1). Because the CI could
differ at different levels of growth inhibition, CIs were obtained
at different levels of growth inhibition, using increasing con-
centrations at a fixed ratio between the two drugs. The CI
was plotted against the fraction affected (Fa of 0.25 would
equal 75% viable cells).

Using Gene Expression Data as Predictors of Cytotoxic
Potency. We developed predictive models for drug response
against the 60 cancer cell lines based on gene expression
profiles. Three groups of genes were used as candidate
predictors: all 343 genes, genes showing strong negative
correlations, and genes with strong positive correlations
(each gene correlated with at least one drug at p < 0.001).
For each compound, we separated cell lines into training and
test samples. To assess the accuracy of this method, we used
a leave-one-out cross-validation procedure. We first esti-
mated the probability of the training cell lines to be resis-
tant to a given compound by modeling drug response levels
[jlog10(GI50)] as a mixture of normal distributions (Supple-
mentary Fig. S1 is available for this article at http://dx.doi.
org/10.1007/s11095-005-9260-y and is accessible for autho-
rized users). Class assignment for a test sample is based on
the predictive probabilities of class membership. This step
differs from the one used in (28) by using information from
all cell lines for prediction purposes and by incorporating into
the analysis the bimodal behavior of growth inhibition
distributions (see Supplementary Material available online
for this article at http://dx.doi.org/10.1007/s11095-005-9260-y
and is accessible for authorized users). Next, to select
predictive genes, we sort genes by their ability to discriminate
between the two classes (resistant and sensitive), using the
BW measure [see Supplementary function (1) available
online for this article at http://dx.doi.org/10.1007/s11095-005-
9260-y and is accessible for authorized users]. In the final
step, we use quadratic discriminant rule to predict resistance
of the test cell line based on top-scoring genes according to
the previous sorting criteria and identified the set of predic-
tor genes capable of producing maximal percent of correct
classification of the 60 cell lines for each drug. We search,
stepwise, for a subset of genes that improves the percentage
of correct classifications using quadratic discriminant rule by
adding one new gene at each step. Once the model cannot be
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improved, the final predictor genes are then selected as the
smallest set of genes producing a model within 5% from the
highest percentage of correct classifications obtained in the
stepwise search described above. This reduces the number
of predictor genes, by accepting predictor sets within 5% of
the optimally observed values, which may lead to more robust
predictor sets. This led to a list of genes ranked by frequency of
presence in the predictor sets for a subgroup of 68 drugs
(pruned from 119 to avoid redundancy between similar drugs).

In a further iteration, we compared the observed fre-
quencies of presence in the predictor sets (see Supplementary
Table VI available online for this article at http://dx.doi.org/
10.1007/s11095-005-9260-y and is accessible for authorized
users) with the ones one would expect if these models would
be random. Only the top 9 positively and the top 12
negatively correlated genes and the top 13 genes among all
343 genes show significantly higher frequencies as predictors
than expected from chance. Finally, we used only these top-
scoring genes (affecting multiple drugs each) to scan all
possible combinations for predicting drug response, resulting
in a refined model with the least number of highly predictive
genes for each individual drug (see Supplementary Table VII
available online for this article at http://dx.doi.org/10.1007/
s11095-005-9260-y and is accessible for authorized users).

RESULTS

Expression of Genes Involved in Growth Factor Signaling
and Other Signaling Pathways

Basal mRNA expression of 343 genes was measured in
the NCI-60 panel. In a previous independent experiment
(29), we had measured 25 of these 343 genes with the same
array method using mRNA extracts from cells grown at
different times and locations. Among the 12 genes with suf-
ficiently robust expression to permit analytical analysis,
geneYgene Pearson’s correlation coefficient ranged from 0.3
to 0.78. Moreover, expression data were compared with
previous results obtained with a cDNA array platform (25).
Based on 144 probes for genes common between the two
arrays, the average Pearson’s correlation coefficient between
the 70-mer oligo and the cDNA array is 0.42, with 90 out of
144 probes with r > 0.30 ( p < 0.05)Vsimilar to a previous
study comparing cDNA arrays (25) and Affymetrix oligonu-
cleotide HU6800 array (7,26). These results indicate that the
array results are robust, while requiring experimental valida-
tion as needed. Our array results are particularly robust for
highly expressed genes, as discussed previously (40), and
further analyzed in Supplementary Material. These genes are
also more likely to yield significant correlation coefficients,
particularly against multiple drugs, because random noise
increases with less well-expressed genes.

The expression of 107 genes with differential expres-
sion across the NCI-60 (SD > 0.35) served to cluster the
60 cell lines (see Supplementary Fig. S2 available online for
this article at http://dx.doi.org/10.1007/s11095-005-9260-y and
is accessible for authorized users). Further validating the
array results, leukemia, colon cancer, melanoma, and renal
cell carcinoma clustered into groups, except for breast,
ovarian, and lung cancers (25, 41).

Pearson’s Correlation Coefficients of NCI-60 Gene
Expression and Drug Potency

To assess the relationship between gene expression and
cytotoxic potency of 119 chemotherapeutic drugs, Pearson’s
correlation coefficients were calculated, together with statis-
tical significance (bootstrap p value). On the basis of
previous results (29), we used p = 0.001 as a stringent cutoff,
which yielded similar results compared to an absolute cor-
relation coefficient value of >0.4 (Supplementary Table II is
available for this article at http://dx.doi.org/10.1007/s11095-
005-9260-y and is accessible for authorized users). This
resulted in 49 positively and 69 negatively correlated genes,
many showing correlations with multiple drugs. Among the
245 genes in the three main families studied in this report, 53
had significant correlations with at least one drug, whereas in
the comparator group of 98 genes, 16 qualified, most of which
with fewer drug correlations.

We first focused on chemoresistance genes with signif-
icant negative correlations (Table I; see Supplementary
Table III available online for this article at http://dx.doi.org/
10.1007/s11095-005-9260-y and is accessible for authorized
users) because several genes have been previously implicated
in chemoresistance, whereas little is known about sensitizing
genes. Among the 69 genes encoding growth factors and their
receptors, many showed significant negative correlations with
multiple drugsVan important criterion in our analysisVwhile
entirely lacking positive drug correlations; therefore, they are
candidates as broad chemoresistance factors. Among the
implicated genes, several were already known to induce
chemoresistance, being involved in EGFR, ERBB2, VEGF,
IGF, and PDGF signaling pathways (15). The number of
significant negative drug correlations provides a crude mea-
sure of the relevance of each gene in mediating multidrug
resistance, yielding a rank order of CYR61, EGFR, IGFBP7,
PDGFC, and ERBB2 (Table I). Both EGFR and ERBB2 are
targets of current anticancer therapy, indicating that our ap-
proach identified known drug targets. However, other growth
factors and receptors scored equally well and therefore
represent interesting candidates for further study.

Among the metalloproteinases, MMP24, ADAM9, and
the inhibitor TIMP2 ranked highly, with multiple negative
correlations. Furthermore, small GTPases scored strongly,
with seven genes showing negative correlations with ten
drugs or more, including ARHC, RRAS2, RAB5B, and
RALB, consistent with their pervasive role in cellular
signaling. Among the other signaling factors (98 genes in-
volved in various signaling pathways, such as GPCRs and G
protein subunits), considerably fewer genes produced multi-
ple negative correlations (see Supplementary Table III), such
as GNG10 and GNG11 with 15 and 7 negatively correlated
genes, respectively. Of 29 G-protein-coupled receptors, only
4 showed strong negative correlation ( p < 0.001) with 1 or 2
out of 119 drugs. This result suggests that these pathways are
less germane to chemoresistance.

Genes with positive correlations, indicative of a possible
role in chemosensitivity, are listed in Table I (and See
Supplementary Table IV for this article at http://dx.doi.org/
10.1007/s11095-005-9260-y and is accessible for authorized
users). Representation of growth factors and associated
signaling proteins in this group is consistent with the dual
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nature of growth factor signaling, supporting either cell
survival or apoptosis. Positively correlated genes are less
prominent, with only RAB37 and RAN scoring against 9Y10
drugs at p < 0.001. Among the other signaling pathways,
phospholipases, G-protein g subunits (GNGs), and a phos-
phodiesterase scored highly (See Supplementary Table IV).
The mechanisms of a potential role in chemosensitivity
remain uncertain, each candidate gene requiring experimen-
tal validation. Therefore, we focus mainly on chemoresist-
ance genes in this report.

Hierarchical Cluster Analysis of Genes Negatively
Correlated with at Least One Drug

Clustering the NCI-60 cells against expression of the 69
negatively correlated genes (See Supplementary Fig. S3 for
this article at http://dx.doi.org/10.1007/s11095-005-9260-y and
is accessible for authorized users) still resulted in the
expected cell line clusters obtained from all genes with

differential expression across cell lines (See Supplementary
Fig. S2). Moreover, the 69 genes clustered into two main
groups, suggesting some level of coexpression. To explore
this further, genes were compared pairwise to each other with
respect to their expression across the NCI-60. This process
again resulted in the same two main groups of genes (See
Supplementary Fig. S4 for this article at http://dx.doi.org/
10.1007/s11095-005-9260-y and is accessible for authorized
users). It remains to be determined whether the clustering of
the negatively correlated genes into two main groups is
biologically significant.

To determine whether the grouping of the negatively
correlated genes is relevant to chemoresistance, we per-
formed hierarchical cluster analysis of genes vs. drugs using
geneYdrug correlations as the distance measure. In this
fashion, genes that affect the same set of drugs cluster
together. This resulted again in the same two major groups
of genes and two large clusters of drugs (Fig. 1). Moreover,
drugs with similar functions tend to cluster together into

Table I. Genes Negatively and Positively Correlated with Drug Response

Gene

p < 0.001

Representative drugsr > 0 r < 0

Growth factors

Negative

CYR61 0 17 Tetraplatin, paclitaxel, geldanamycin

EGFR_1 0 12 Dolastatin-10, halichondrin B, paclitaxel, geldanamycin

IGFBP7 0 9 Tetraplatin, methotrexate, fluorouracil (5FU), acivicin

PDGFC 0 7 Diaminocyclohexyl-Pt-II, acivicin, taxol analogs

ERBB2 0 5 Carmustine (BCNU), cisplatin, zorubicin

Positive

KDR 6 0 Paclitaxel, geldanamycin

Metalloproteinases

Negative

TIMP2 0 18 Fluorodopan, doxorubicin, fluorouracil (5FU), dichloroallyl-lawsone

MMP24 0 12 Dolastatin-10, trityl-cysteine, paclitaxel

ADAM9 0 7 Tetraplatin, taxol analogs, inosine-glycodialdehyde

Positive

ADAMTS8 5 0 Thioguanine, thiopurine (6MP)

Small GTPases

Negative

ARHC 0 28 Tetraplatin, daunorubicin, Baker’s soluble antifolate, geldanamycin

RAB5B 0 18 Cyclodisone, paclitaxel, vinblastine sulfate, bisantrene

ARF4 0 17 Iproplatin, doxorubicin, dichloroallyl-lawsone, taxol analogs

RRAS2 0 16 Paclitaxel, bisantrene, halichondrin B, geldanamycin, daunorubicin

RAB6A 0 15 Cisplatin, cyclodisone, hepsulfam, camptothecin, 9-MeO

RALB 0 12 Carboplatin, fluorodopan, bisantrene, deoxydoxorubicin

RAB18 0 10 Carmustine (BCNU), Baker’s soluble antifolate, halichondrin B

RAB2 0 7 Daunorubicin, dichloroallyl-lawsone, paclitaxel

RHEB2 0 5 Ftorafur, taxol analogs, inosine-glycodialdehyde

Positive

RAB37 10 0 Tetraplatin, aminopterin, hydroxyurea

RAN 9 0 Amonafide, aminopterin derivative, methotrexate, acivicin

RAC2 5 0 Chlorambucil, L-asparaginase, hydroxyurea

Only genes correlated with at least five drugs with p < 0.001 are included. For all genes with at least one drug at p < 0.001, see Supplementary

Tables III and IV.

Fig. 1. Hierarchical cluster analysis of 69 negatively correlated genes against the 119 anticancer drugs using geneYdrug Pearson’s correlation

coefficients. Genes and drugs cluster into two main groups, whereas drugs further cluster into subgroups approximately according to their

mechanisms of action.
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smaller subgroups, such as tubulin-active antimitotic agents
(taxol analogs, colchicine, vincristine sulfate, and vinblastine
sulfate) and topoisomerase I inhibitors (e.g., camptothecin
and its derivatives). We next grouped the genes further by
performing a geneYgene cluster analysis, on the basis of
geneYdrug correlations. In this analysis, each gene is com-
pared to all others, using the correlation coefficients against
the 119-drug panel. This analysis revealed a sharp contrast
between the two main groups of genes observed in the pre-
ceding cluster experiments (see Supplementary Fig. S5 for
this article at http://dx.doi.org/10.1007/s11095-005-9260-y and
is accessible for authorized users), showing that the two gene
clusters are potentially related to chemoresistance.

Genes showing similar NCI-60 expression and drug
potency profiles are likely to be part of the same signaling
pathway. For example, ADAM9 (a metalloproteinase medi-
ating release of membrane-tethered growth factors such as
HB-EGF), EGFR, and the GTPase ARHC (RhoC) clustered
within the same group in all analyses and hence may rep-
resent members of a signaling pathway relevant to chemo-
resistance for a portion of the drug panel. Network analysis
indicates that EGFR and ADAM9 are close neighbors (to be
published). Similarly, ERBB2 and RALB clustered together
implying a functional relationship. On the other hand, the
close receptor homologues, EGFR and ERBB2, presumed to
have similar signaling pathways, clustered at some distance in
either of the two main groups, suggesting that they serve
independent functions across the NCI-60 panel.

EGFR and ERBB2: Two Genes with Distinct
Drug Correlations

The expression results of EGFR and ERBB2 were re-
producible between 70-mer oligonucleotide and cDNA
arrays (r = 0.80 and 0.60, respectively). Each receptor
correlated negatively with a number of drugs, but unsuper-
vised cluster analysis (Fig. 1) suggested that the correlated
drug sets are distinct. Figure 2 (upper panel) displays the
sorted Pearson’s correlation coefficients for EGFR vs. the
119 anticancer drugs. Keeping the same order of the 119
drugs, a clearly distinct and even opposite profile is observed
for ERBB2 correlation coefficients (Fig. 2, lower panel,
correlation between EGFR and ERBB2, r = j0.25, p <
0.002, t test). This illustrates profound and unexpected
differences in the interactions between EGFR and ERBB2
expression and cytotoxic drugs.

Synergism and Antagonism Between EGFR- and ERBB2-
Selective Inhibitors and Classical Cytotoxic Drugs

We tested the potency of, and interactions between,
EGFR inhibitor AG1478 and ERBB2 inhibitor AG825, in
cell lines with different levels of EGFR and ERBB2 ex-
pression. Figure 3A shows the mRNA levels of EGFR and
ERBB2 in four cancer cells based on our array data, which is
consistent with reported protein levels (http://dtp.nci.nih.gov/
mtweb/targetinfo?moltid=MT1173&moltnbr=813) using West-
ern hybridization (Fig. 3B). Genotyping of 37 cell lines of the
NCI-60 had revealed a lack of activating mutations for EGFR
in exons 19 and 21 (42), whereas mutational status remains

unknown for ERBB2. In addition to AG1478 and AG825, we
included the conventional anticancer drugs paclitaxel, cis-
platin, and CPT, 10-OH in drugYdrug interaction studies. The
Pearson’s correlation coefficients between EGFR and pacli-
taxel, cisplatin, and CPT, 10-OH were j0.43, j0.14, and
j0.08, respectively. ERBB2 correlated with the three drugs
at j0.03, j0.33, and j0.13, respectively. Synergism or an-
tagonism was determined by calculation of the CI vs. fraction
affected (38). For example, AG1478 and CPT, 10-OH were
synergistic in SK-MEL-2 cells (CI < 1, Fig. 4A). In contrast,
antagonism was observed (CI > 1, Fig. 4B) between AG1478
and paclitaxel in SK-MEL-2 cells. AG1478 and AG825 did
not act synergistically in the four cell lines tested.

Cytotoxic effects of all dual drug combinations in four
cell lines are listed in Table II using the CI. For some
fixed-ratio drug combinations, the CI value varied over
different levels of growth inhibition (Fa). Synergistic effects
were observed between AG1478 or AG825 and paclitaxel,
cisplatin, or CPT, 10-OH in some cells, whereas antagonism
occurred in others, with no clear relationship to EGFR or
ERBB2 expression. Furthermore, the geneYdrug correlations
for EGFR and ERBB2 did not predict synergism or anta-

Fig. 2. GeneYdrug correlation profiles for EGFR (A) and ERBB2

(B) with 119 anticancer drugs. Pearson’s correlation coefficients

against 119 drugs are sorted for EGFR, whereas the order of drugs is

maintained for ERBB.
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gonism when the inhibitor of EGFR (AG1478) or ERBB2
(AG825) was combined with cytotoxic anticancer drugs in
the four cell lines tested. Whereas the EGFR inhibitor
AG1478 potentiated CPT, 10-OH, no significant correlation
was observed between EGFR and CPT, 10-OH (r = j0.08).

Prediction of Chemosensitivity Using Gene Expression
Profiles and a Learning Algorithm

For this analysis, 68 drugs out of the 119-drug panel were
selected to avoid redundancy and bias stemming from
compounds with similar chemical structure, mechanism of
action, and potency. Different predictive strategies were
performed using all 343 genes, or only the 69 negatively or
49 positively correlated genes with p < 0.001 against at least
one drug (see Supplementary Table V for this article at
http://dx.doi.org/10.1007/s11095-005-9260-y and is accessible
for authorized users). Drug overlap between the positively
and negatively correlated genes is minimal. Using a heuristic
leave-one-out strategy (see Supplementary Material and

Methods for this article at http://dx.doi.org/10.1007/s11095-
005-9260-y and is accessible for authorized users), we
identified predictive sets of genes. For each set of predictive
genes, the minimum set of genes was determined within 5%
of the optimal prediction of the entire set.

Prediction accuracy ranged mainly from 0.6 to 0.9,
usually with five to ten genes selected as predictors. Using
all 343 genes or only the 69 negatively correlated genes
yielded similar results in most cases, whereas only the 49
positively correlated genes tended to score somewhat lower.
As not all possible combinations of genes can be tested in our
heuristic algorithm with a large number of genes, better
scoring gene sets may well exist.

Several genes recur more frequently as predictors of
drug potency (see Supplementary Table VI). The top genes
with negative correlations include TGFBR3, RAB6A, RALB,
TIMP2, ARHC, RAB17, and ARF4, whereas the top positive
genes are RAB37, RAC2, PLCL2, PDE1B, PLCD4, and
ADAM12. It is noted that these genes are not always the
highest-ranking genes sorted by number of highly correlated
drugs (Table I and see Supplementary Tables III and IV).

To limit the effect of the heuristic approach on the
prediction models, we reduced the number of candidate pre-
dictor genes to those appearing most frequently in predictive
sets of drug potency. Only the top-scoring 9 positively and 12
negatively correlated genes and 13 genes among all 343 genes
showed significantly higher frequencies as predictors than
expected from random occurrence (Table IIIA). The 13
genes with both positive or negative correlations overlapped
partially with those obtained from predictions using only
negatively or positively correlated genes, suggesting that
sampling variability is kept at a reasonable level. A small
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Fig. 4. The drug combination indices with respect to fraction

affected (Fa) for the combination of EGFR inhibitor AG1478 with

camptothecin 10-OH (A), and AG1478 with paclitaxel (B). The

combination index of AG1478/camptothecin 10-OH is <1, an

indication of synergism, whereas that of AG1478/paclitaxel is >1,

indicative of antagonism.

Fig. 3. Relative mRNA (A, log2 transformed from the 70-mer mi-

croarray hybridization) and protein level (B) of EGFR and ERBB2

in cell lines SK-OV-3, TK-10, EKVX, and SK-MEL-2. EGFR and

ERBB2 protein levels (Western blots, relative expression level

compared to A431 cells) are taken from http://dtp.nci.nih.gov/

mtweb/targetinfo?moltid=MT1173&moltnbr=813.
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subset of 13 genes, TGFBR3, FGF19, FGFR2, TIMP2,
RAB6A, and ARHC (negative correlations) and PLCL2,
ADAM12, MMPL1, RAB37, RAC2, and RAB39B (positive
correlations), was found to be highly predictive for many
anticancer drugs (Table IIIA). RAB39B appeared in many
predictive models because of multiple positive correlations
(maximally r = 0.47), although the lowest p value was only
0.002. Predictive accuracy for only these highest scoring
genes is listed in Table IIIB (and Supplementary Table VII),
with optimal predictions derived from all possible gene
combinations for each drug. This improved the prediction
accuracy, especially for those drugs with previously low
prediction values, which probably had resulted from the
heuristic approach used to detect predictor genes. Supple-
mentary Table VIII (available for this article at http://
dx.doi.org/10.1007/s11095-005-9260-y and is accessible for
authorized users) shows examples of predictive gene sets
for individual compounds. Hence, starting from 343 genes in
this study, we have identified a small subset of genes yielding
good predictions for a majority of drugs.

Literature Validation of Chemoresistance Genes Implicated
by GeneYYDrug Correlations

Table I lists 17 genes showing significant negative
correlations with at least five drugs. A literature survey
revealed that eight of these genes are known to be involved
in chemoresistance or tumor progression (Table IV). More-
over, these eight genes each have predictive power for the
potency of many anticancer drugs against the NCI-60

(Table IV and Supplementary Table VI). This literature
analysis supports the notion that our approach is capable of
identifying known chemoresistance genes, whereas the newly
suggested genes require further experimental validation.
Much less is known about genes enhancing chemosensitivity
so that a literature evaluation is not feasible.

DISCUSSION

We have developed an approach for evaluating the role
of gene families related to growth factor signaling in chemo-
resistance and chemosensitivity. Comparing basal gene
expression patterns with potency of 119 standard anticancer
drugs in the NCI-60 panel revealed numerous significant
geneYdrug correlations (p < 0.001; r > 0.4). Among the 17
genes scoring strongly against multiple drugs, 8 genes were
already known to be involved in chemoresistance, includ-
ing growth factors and receptors, metalloproteinases, and
GTPases. Members of these gene families scored more fre-
quently and higher than genes encoding other signaling fac-
tors tested for comparison (e.g., GPCRs). In addition, novel
candidate genes were revealed that scored at least as strongly
as the known chemoresistance factors. It is implicitly ac-
knowledged that basal mRNA expression profiles yield only
a partial window onto all factors that determine drug res-
ponses. Moreover, gene expression profiles relevant to
growth factor signaling could have been associated with
tumor cell lines inherently resistant or sensitive to drugs
because of other factors. Nevertheless, where significant

Table IIIA. Genes Occurring in Predictive Models More Often than Expected by Chance, Sorted by Number of Drugs

Negatively correlated genes Number of drugs Positively correlated genes Number of drugs All 343 genes Number of drugs

TGFBR3 38 PLCL2 33 RAB5B 33

FGF19 34 ADAM12 33 TGFBR3 32

FGFR2 32 MMPL1 20 PLCL2 32

TIMP2 32 RAB37 18 RAN 24

RAB6A 28 RAC2 18 RAB6A 21

RAB17 26 PDE1B 18 ARF4 21

ARHC 23 IGFALS 18 PLCD4 21

ADRB3 21 PLCD4 16 RAB37 20

RALB 20 PLCB2 12 ARHC 18

GNG12 20 RAHH 17

ARF4 20 RAC2 15

RAB25 16 ERBB3 13

RAB39B 11

Table II. Drug Combination Effects between AG1478 or AG825 and Paclitaxel, Cisplatin, or CPT, 10-OH Using the Combination Index

(see Fig. 4)

AG1478 AG825

Paclitaxel Cisplatin CPT, 10-OH Paclitaxel Cisplatin CPT, 10-OH AG1478

SK-OV-3 Additive Additive to

antagonistic

Additive to

synergistic

Antagonistic Antagonistic Additive to

antagonistic

Antagonistic

TK-10 Synergistic Synergistic Synergistic Synergistic Synergistic Additive Additive to

antagonistic

EKVX Synergistic Antagonistic Synergistic Synergistic Antagonistic Additive Additive

SK-MEL-2 Antagonistic Antagonistic Synergistic Antagonistic Antagonistic Additive Antagonistic
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correlations are found, these can then be further validated by
other means to determine whether the expression of these
genes can serve as biomarker or represent a causative factor
in chemoresistance or chemosensitivity. The identification of
known drug resistance factors in the analyzed gene families
validates our approach (Table IV).

Growth Factors and Chemoresistance

EGFR and ERBB2 are chemoresistance factors (43Y45)
showing negative correlation with multiple drugs in this
study. Consistent with its negative correlation with EGFR

(r = j0.4), paclitaxel was shown to act synergistically with
the EGFR inhibitor ZD1839 in vitro and against xenografts
of human renal cancer SKRC-49 (46). Similarly, ERBB2
displays multiple negative correlations, with ERBB2/PI-3K/

Akt signaling conveying multidrug resistance (22). More-
over, Herceptin\ (ERBB2/HER2 antibody) causes chemo-
sensitivity in animal models and clinical studies (44,45,47).
Showing significant negative correlations to multiple drugs,
CYR61 is an avb3 integrin receptor ligand converging down-
stream on heregulin-ERBB2/3/4 receptor-mediated signaling
(48). CYR61 was included in the present study because of its
association with breast cancer chemoresistance (49), con-
verging on growth factor signaling through the NF-kappaB/
XIAP pathway (50). Furthermore, vascular endothelial
growth factor-165 receptor (VEGF165R), showing strong
negative drug correlations, had been shown to be involved
in tumor angiogenesis, progression, chemoresistance, and
poor prognosis (51,52).

Our results also point to potentially novel growth factors
and receptors involved in chemoresistance. TGFBR3 scored

Table IIIB. Comparison of Prediction Accuracy for Select Drugs, between a Heuristic Approach with All Relevant Genes (69, 49, and 343),

and Using Only the Top-Scoring Genes (12, 9, and 13) Showing High Frequencies as Predictors (Table IIIA)

Drugs

Accuracy (%), negatively

correlated genes

Accuracy (%), positively

correlated genes

Accuracy (%),

all 343 genes

69 genes Top 12 49 genes Top 9 343 genes Top 13

Mitomycin 70 77 68 70 75 77

Lomustine (CCNU) 82 80 67 75 82 75

Cisplatin 72 78 73 73 82 75

Bisantrene 93 93 90 83 87 95

Doxorubicin 57 83 52 72 30 93

Teniposide 53 82 55 70 45 78

L-Asparaginase 62 85 42 90 32 90

Hydroxyurea 62 93 58 87 52 95

Fluorouracil (5FU) 78 82 82 83 88 90

Vinblastine sulfate 85 87 83 80 85 83

Paclitaxel 87 88 88 83 90 90

In the latter case, all possible combinations were tested, and the highest scoring set was selected. A complete list of the 68 drugs tested is

available in Supplemental Table VII.

Table IV. Genes Previously Implicated as Chemoresistance or Tumor Progression Factors

Genes

Involvement in chemoresistance

or tumor progression

Negatively correlated drugs

out of 119 a ( p < 0.001)

Number of drugs as predictive

factor (out of 68 drugs)b References

Growth factor related

EGFR Chemoresistance and

tumor progression

12 7 46, 76

ERBB2 Chemoresistance and

tumor progression

5 7 22, 45

CYR61 Chemoresistance

and angiogenesis

17 7 49, 50

Metalloproteinases

ADAM9 Chemoresistance and

poor prognosis

7 9 55Y57

Small GTPases

ARHC Metastasis 28 16 66, 67

RRAS2 Transformation and

chemoresistance

16 9 61Y64

ARF4 EGFR signaling 17 14 77

RALB Cancer cell survival 12 20 65

The table lists the number of negatively correlated drugs and the number of times the gene appears in a predictive subset of genes for a test set

of 68 drugs.
a Information from Table I.
b Information from Supplemental Table VI.
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highest as a predictor for chemoresistance. While devoid of
serine/threonine kinase activity (53), TGFBR3 appears to be
a necessary component of the TGFb receptor signaling com-
plex (54) and therefore may represent an interesting target
for cancer treatment or a predictor of treatment response.
Additional growth factors implicated by negative correla-
tions include FGF17, FGF18, FGF19, IGF2, and NRG1. Their
relevance to chemoresistance needs to be validated in each
case.

Metalloproteases and Chemoresistance

Putative chemoresistance factors include members of the
matrix metalloproteinase family, such as ADAM9 (a disin-
tegrin and metalloproteinase domain 9), which is negatively
correlated with many drugs in the NCI-60. ADAM9 is highly
expressed in hepatocellular carcinoma (55) and in pancreatic
ductal adenocarcinomas where cytoplasmic expression is
correlated with poor prognosis (56). Furthermore, ADAM9

is part of the signaling cascade evading apoptosis induced by
cytotoxic drugs (57), possibly by mediating release of
heparin-binding EGF-like growth factor (HB-EGF) (58).
Strong correlations in the expression and chemoresistance
profiles in the NCI-60 support the notion that ADAM9 and
EGFR are functionally interacting. Several other metal-
loproteinases and inhibitors (Table I), such as TIMP2 and
MMP24, also showed strong negative correlation with mul-
tiple anticancer drugs and, moreover, served as predictors
of drug potency. Their possible role in chemoresistance
needs to be further validated. Negative drug correlations for a
metalloproteinase inhibitor underscore their multiple biological
functions, which are potentially opposite effects on drug
response.

GTPases and Chemoresistance

Among the 92 GTPases tested, several were negatively
correlated with multiple drugs (e.g., ARHC, RAB5B, ARF4,
RRAS2/TC21, RAB6A, and RALB). A few GTPases showed
multiple positive correlations (e.g., RAB37, RAN, RAC2, and
RAB39B), indicating that signaling networks can have dual
outcomes, promoting either apoptosis or survival. RAB6A and
RALB (negative), and RAB37 and RAC2 (positive) were
heavily represented in gene panels predictive of drug sensitivity.

Previous work supports a role of GTPases in cell
transformation and survival (consistent with negative drug
correlations). RAS couples extracellular signaling to down-
stream RAF/MEK/ERK and PI3-K/AKT cascades (59),
activation of which via EGFR contributes to BCNU resistance
in gliomas (60). Also negatively correlated with multiple
drugs, TC21/RRAS2 mediates transformation of cancer
cells involving phosphatidylinositol 3-kinase (PI3-K) (61,62)
and is activated by growth factors (63), including FGF1
and FGF2, shown to convey chemoresistance (64). Similarly
implicated in our study, and a known key modulator of cell
proliferation (65), RALB clusters together with ERRB2
by gene expression and drug potency correlations. Lastly,
ARHC (RhoC) promotes tumor metastasis (66) and seems
to contribute to chemoresistance via growth factor signaling
(67).

Negative correlations further point to a series of GTPases
not yet directly implicated in chemoresistance, such as ARF4,
RHEB2, RAB5B, RAB6A, RAB18, and RAB32 (Table I).
Further studies are needed to validate these genes as chemo-
resistance factors.

Chemosensitivity Genes

Positive gene drug correlations imply a possible role in
chemosensitivity (e.g., Table I and Supplementary Table IV),
e.g., RAB37 showing multiple drug correlations. RAB39B is a
member of the RAS oncogene family, but displayed exclu-
sively positive correlation (highest r = 0.47 with iproplatin);
this observation requires further study. These findings are
consistent with the Janus-like role of growth factor signaling
in cell survival and apoptosis. ARHGDIA encodes a Rho
GDP dissociation inhibitor and is predictive as a chemo-
sensitivity factor for 14 drugs, possibly by regulating Rho
activity. IGFALS is an insulin-like growth factor-binding
protein (acid labile subunit), which complexes IGF and
IGFBP3 into a 150-kDa aggregate (see OMIM, 601489). This
could account for the positive correlation and predictive power
for 15 drugs. EGFL4 and EGFL5 encode EGF-like polypep-
tides containing multiple EGF repeats, and function in cell
adhesion, but the physiological role remains uncertain.

Remarkably, genes with either negative or positive
correlations involving many drugs are nearly exclusively either
negative or positive, with no overlap between them. This
reinforces the hypothesis that these genes are involved in
either chemoresistance or chemosensitivity by downstream
mechanisms, independent of the direct mechanism of action of
each single drug. We propose that these common downstream
genes will prove valuable as biomarkers or drug targets.

EGFR and ERBB2 Interactions

Our clustering results indicate that EGFR and ERBB2
belong to different gene clusters with distinct expression and
drug resistance patterns. This was surprising as EGFR and
ERBB2 are coexpressed in some tumors and can heterodi-
merize (9). Although gefitinib (Iressa) in combination with
trastuzumab (Herceptin) acted synergistically against human
breast cancer cell growth (68), no synergism between EGFR
inhibitor AG1478 and ERBB2 inhibitor AG825 was ob-
served in the current study. Whereas members of the ERBB
receptor family are mediators of cell survival, ERBB
receptors might induce cell death under some circumstances
(69,70). Indeed, overexpression of ERBB2 in cancer cells
could result in either chemoresistance or chemosensitivity for
different anticancer drugs (71). For example, multiple studies
have shown that overexpression of ERBB2 can convey
resistance to certain chemotherapeutic drugs. ERBB2 over-
expression by transfection in MDA-MB-435 increased resis-
tance to paclitaxel and taxotere. However, contradictory
results were observed in different laboratories (45).

In addition, the combined effects of AG1478 or AG825
with cytotoxic anticancer drugs in different cell lines were not
directly related to the expression level of EGFR or ERBB2.
EGFR expression levels are not correlated with the potency
of EGFR inhibitor gefitinib in mice bearing human tumor-
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derived xenografts (72). Our results are consistent with
previous findings that the synergistic inhibition of tumor
growth by EGFR inhibitor gefitinib and cytotoxic agents,
such as paclitaxel, did not depend on EGFR expression level
(20). In addition, the antitumor effect of gefitinib in cancer
patients seemed to be related to mutations in the EGFR
catalytic domain, but not EGFR expression (42,73). On the
other hand, no survival benefit was observed for patients with
EGFR mutations (http://www.iressa-us.com/pharm.asp). The
mechanism of the combined effects seems to be context
dependent and is not currently predictable, confounding
attempts to extrapolate to therapeutic effects in vivo.
Another confounding factor is the lack of specificity of the
inhibitors. For example, AG1478 not only inhibits EGFR,
but could also inhibit ERBB4 (74), and parallel signaling
pathways can bypass the block. Inhibition of growth factor
signaling at different junctions might improve anticancer
potency, as shown with combined inhibition of both mutated
EGFR and PI3K (75).

In this study, strong negative correlation between EGFR
and ERBB2, and multiple drugs, implicating chemoresis-
tance, failed to predict synergism in some cases. The
mechanisms of observed synergism and antagonism require
further study to facilitate the design of effective combination
treatments. Our results caution against the indiscriminate use
of such combinations.

Prediction of Drug Potency

A promising avenue is the use of biomarkers to predict
anticancer drug response (3,28). Here we have used expres-
sion of growth factor signaling genes for prediction of
cytotoxic potency in the NCI-60 to develop an approach that
can be extrapolated to genome-wide expression profiles. For
each drug, we have evaluated several predictive models using
only negatively or positively correlated genes or both. For
example, EGFR, ERBB2, RRAS2, ARHC, RALB, ARF4,
CYR61, and ADAM9, all negatively correlated with multiple
anticancer drugs, have predictive power for many drugs in
the NCI-60 panel (Supplementary Table VI). Using both
positively and negatively correlated genes, e.g., RAB37,
RAB6A, RAC2, PLCL2, and TGFB3 (Supplementary Table
VI), yields highest predictive values for multiple drugs. When
we used only the top scoring genes (9 positively or 12
negatively correlated genes and 13 genes selected from all
343 genes in prediction models for all drugs, these small sets
of genes were sufficient and even exceeded predictions with
larger sets that yielded entirely different sets for each drug.
Comparing to previous studies with reliance on the expres-
sion of many genes in each predictive model, the attained
accuracy is at least as good. This result indicates that random
sampling noise using heuristic models poses a problem to
selecting optimally predictive gene sets. By focusing on the
smallest number of genes that can be extracted from gene
expression-drug potency databases, in particular, involving
gene families known to function in chemoresistance, and
exhaustively testing all possible combinations, we have
improved prediction of drug potency in the NCI-60, although
the number of predictor genes used as markers for all drugs
was very small. These genes are potential key factors in
chemoresistance and sensitivity and could serve as novel drug

target per se. In future studies, we will extend this approach
(progressive selection of candidate genes) to expression
arrays covering the entire genome. A preliminary analysis
of whole-genome expression data from the NCI-60 revealed
that the genes identified in the present study are well
represented among all genes showing significant geneYdrug
correlations. This will enable us to assemble a general set of
marker genes with improved predictive potential.

CONCLUSIONS

We have developed a general approach for identifying
known and novel candidate genes that could be involved in
chemoresistance and chemosensitivity in the treatment of
cancer patients. Whereas prediction of drug potencies in vitro
may not be directly applicable to in vivo therapy, the present
study guides the selection of biomarkers in cancer chemo-
therapy. The potential of the identified genes as novel
therapeutic targets and their use as biomarkers for predicting
drug responses to treatment requires further study.
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